Package: gophr (via r-universe)

November 14, 2024

Title Utility functions related to working with the MER Structured
Dataset

Version 4.1.6

Description This packages contains a number of functions for working
with the PEPFAR MSD.

Depends R (>=3.4.2)
License MIT + file LICENSE

Imports crayon, curl, getPass, dplyr (>= 1.0.0), glue, googlesheets4,
httr, lifecycle, magrittr, purrr, readr, stringr, tibble,
tidyr, tools, usethis, vroom, jsonlite

Suggests arrow, aws.s3, knitr, rmarkdown, testthat (>= 3.0.0)

Remotes USAID-OHA-SI/glamr, USAID-OHA-SI/gagglr, USAID-OHA-SI/grabr
Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

URL https://usaid-oha-si.github.io/gophr/
Config/testthat/edition 3

Config/testthat/parallel true

VignetteBuilder knitr

Config/pak/sysreqs git make libgit2-dev libicu-dev libssl-dev
libx11-dev

Repository https://usaid-oha-si.r-universe.dev

RemoteUrl https://github.com/USAID-OHA-SI/gophr
RemoteRef HEAD

RemoteSha 5bdbOca3e9ae44d4923f0bbbf19705e4bc134e4d

https://usaid-oha-si.github.io/gophr/

2 achv_color_map

Contents
achv_color_map e 2
adorn_achievement e e 3
apply_funding_type 4
apply_partner_type e e e e e e 4
browse_KnowniSsues 5
calc_achievement e e 6
cascade Ind L. L L s e 7
clean_agency e 7
clean_column e e 8
clean_indicator e 8
clean_psnu e e e e 9
get_metadata L e e 10
identifypd e e e 11
identify_psd 12
pluck_totals e e e 13
read_msd e 13
read_psdo L 14
remove_centralsupportol L e e e e 15
TEMOVE_IMNO .« o v v v e e e e e e e e e e e e s 15
remove_SCh e 16
rename_official s 17
reshape_msd L e e 17
resolve_Knownissues e e 18
snapshot_ind 20
source_info L L e e e e 20
SPlit_SAVE e 21

Index 23

achv_color_map OHA Achievement Colors
Description

A tibble of the OHA Colors associated with different target achievement thresholds - *At Risk’,
’Concerned’, On Target’, and *Above Target’. This table includes the current mapping as well as
the original/classic one. These colors are used in association with ‘adorn_achievement®.

Usage

data(achv_color_map)

adorn_achievement 3

Format
A data frame with three variables and 4 rows
achv_desc description of each achievement level

achv_color hex code of the associated color to the achievement level

achv_color_classic classic/original hex code of the associated color to the achievement level

adorn_achievement Adorn Achievement - Percent and Color

Description

‘adorn_achievement‘ calculate target achievement (cumulative and/or quarterly) for a standard MSD
or one reshaped using ‘reshape_msd‘()‘ as well as to apply achievement group labels and colors. It
will run ‘calc_achievement® if an achievement column does not exist in the dataset.

Usage

adorn_achievement(df, qtr = NULL, classic = FALSE)

Arguments
df data frame as standrd MSD or one from reshape_msd()
qtr if using standard MSD, need to provide the most recent quarter, ideally using
identifypd(df_msd, pd_type = "quarter")
classic use the original OHA achievement color palette (pre July 2024), default = FALSE
Value

data frame with achievement values, labels, and colors

See Also

Other achievement: calc_achievement()

Examples

Not run:
df_msd <- read_msd(path)
df_msd_agg <- df_msd %>%

filter(operatingunit == "Jupiter”
indicator %in% c("TX_NEW", "TX_CURR"),
funding_agency != "Dedup”,
standardizeddisaggregate == "Total Numerator”) %>%

group_by(operatingunit, funding_agency, fiscal_year, indicator) %>%
summarise(across(where(is.double), sum, na.rm = TRUE)) %>%
ungroup()

4 apply_partner_type

adorn_achievement (df_msd_agg)

df_msd_agg %>%
reshape_msd("quarters") %>%
adorn_achievement ()

df_msd_agg %>%

reshape_msd("quarters”, qtrs_keep_cumulative = TRUE) %>%
adorn_achievement ()

End(Not run)

apply_funding_type Apply Funding Type

Description
When working with financial or HRH data, its often useful to determine whether funding or staffing
are counted as "service delivery" or "non-service delivery"

Usage
apply_funding_type(df)

Arguments

df Financial Structured Dataset data frame

Value

a new column, funding_type

apply_partner_type Apply partner type (local/international)

Description

‘apply_partner_type‘ pulls from USAID managed Google Sheet maintained by the Local Partner
team that designates all USAID mechanisms by their type, local or international. The designations
include the updates for regional partners, which in FY21 are classified as local. These adjustments
can be found on the adjusted column.

Usage
apply_partner_type(df)

browse_knownissues 5

Arguments

df data frame, MER or financial dataset

Value

a df with the partner types provided by USAID.

browse_knownissues Browse Known Issues

Description

Launches the USAID managed, Known Data Issues Tracker.

The Known Data Issues Tracker is a table that summarizes different issues that are known in DATIM
but cannot be resolved. For example, when a treatment partner start/ends mid-year, there will be
duplicated targets that cannot be adjusted in DATIM.

The list of known issues is maintained by USAID/SIEI division. To access the table requires having
a USAID email account.

Usage

browse_knownissues()

Value

Launches The Known Data Issues Tracker Google Sheet.

See Also

[resolve_knownissues()] to exclude Known Issues from data set; [set_email()] to store USAID
email; [load_secrets()] to load credentials into session.

Examples

Not run:
load_secrets()
browse_knownissues()
End(Not run)

6 calc_achievement

calc_achievement Calculate Achievement

Description

‘calc_achievement* creates a target achievement column standard to many PEPFAR analyses. It can
calculate achievement from a normal MSD or one reshaped using ‘reshape_msd®.

Usage

calc_achievement (df)

Arguments

df MSD based dataframe

Value

one or two additional columns that calculate achievement and/or quarterly achievement

See Also

[reshape_msd()]

Other achievement: adorn_achievement ()

Examples

Not run:
df_msd <- read_msd(path)
df_msd_agg <- df_msd %>%

filter(operatingunit == "Jupiter"”
indicator %in% c("TX_NEW", "TX_CURR"),
funding_agency != "Dedup”,
standardizeddisaggregate == "Total Numerator”) %>%

group_by(operatingunit, funding_agency, fiscal_year, indicator) %>%
summarise(across(where(is.double), sum, na.rm = TRUE)) %>%
ungroup()

calc_achievement (df_msd_agg)

df_msd_agg %>%
reshape_msd("quarters"”) %>%
calc_achievement ()

End(Not run)

cascade_ind 7

cascade_ind MER Clinical Cascade indicators

Description
List of indicators in the MER that comprise the clinical cascade. These indicators are needed for
calculating the 90s/95s plus linkage and viral load coverage.

Usage

data(cascade_ind)

Format
A list of clinical cascade indicators

cascade_ind indicator names

clean_agency Clean data from funding agency column

Description
This function converts all funding agency names to upper case removes the HHS prefix for those
agencies and moves State and USAID subsidiaries under their parent agencies

Usage

clean_agency(.data)

Arguments

.data MSD Datasets
Value

Cleaned MSD DataFrame
See Also

Other column munging: clean_column(), clean_indicator(), clean_psnu()

Examples

Not run:
df_msd %>% clean_agency()
End(Not run)

8 clean_indicator
clean_column Clean column data
Description
Clean column data
Usage
clean_column(.data, colname = "psnu")
Arguments
.data MSD Datasets
colname Name of the column(s)
Value
Cleaned MSD DataFrame
See Also
Other column munging: clean_agency(), clean_indicator(), clean_psnu()
Examples
Not run:
df_msd %>% clean_column(colname = "psnu")
End(Not run)
clean_indicator Clean indicators (apply _D suffix)
Description
‘clean_indicator® applies a ’_D’ suffix to any indicators that are a denominator. This is particularly
useful when aggregating data or reshaping.
Usage
clean_indicator (df)
Arguments

df MSD data frame

clean_psnu

Value

indicators with denominator have _D suffix

See Also

Other column munging: clean_agency(), clean_column(), clean_psnu()

Examples

Not run:
df <- df %>%
filter(indicator == "TX_PVLS",
standardizeddisaggregate %in% c(”"Total Numerator”, "Total Denominator”)) %>%
clean_indicator()
End(Not run)

clean_psnu Clean PSNU column data

Description

Clean PSNU column data

Usage

clean_psnu(.data)

Arguments

.data MSD Datasets
Value

Cleaned MSD DataFrame
See Also

Other column munging: clean_agency(), clean_column(), clean_indicator()

Examples

Not run:
df_msd %>% clean_psnu()
End(Not run)

10 get_metadata

get_metadata Extract MSD Meta Data

Description

This function is used to extract meta data as a list from the source file of a MER Structured Dataset,
MER NAT_SUBNAT Structured Dataset, Financial Structure Dataset, HRH Structured Dataset, or
DATIM Genie export. It creates a list object, metadata, in the global environment containing the
source, current fiscal year, current period, current quarter, as well as a caption.

Usage

get_metadata(path, type, caption_note)

Arguments
path path to the folder containing MSDs or specific MSD file (default relies on glamr::si_path()
if available)
type PSD type: "OU_IM", PSNU_IM", "NAT_SUBNAT", "Financial"; default =
"OU_IM_FY2*"

caption_note additional information to include in a viz caption footer

Value

list of meta data information about the source dataset

See Also

Other metadata: extract_metadata(), source_info()

Examples

Not run:

meta <- get_metadata() #works if you have stored path to the MSD folder via glamr: :set_paths()
meta$curr_fy
End(Not run)

Not run:
library(tidyverse)
library(glamr)
library(gophr)
library(glue)

ref_id <- "1bdf4c4e”

meta <- get_metadata(caption_note = "Created by: The Dream Team")

cntry <- "Saturn”

identifypd 11

df <- si_path() %>%
return_latest("OU_IM") %>%
read_msd()

df_viz <- df %>%
filter(operatingunit == cntry,
fiscal_year == meta$curr_fy,
indicator == "TX_NEW",
standardizeddisaggregate == "Total Numerator")

df_viz <- df_viz %>%
group_by(fiscal_year, indicator, mech_code) %>%
summarise(across(c(targets, starts_with("qtr”)), sum, na.rm = TRUE),
.groups = "drop”)

df_viz <- reshape_msd(df_viz, "quarters"”)
df_viz %>%

ggplot(aes(period, results_cumulative)) +
geom_col() +

geom_text(data = . %>% filter(., period == meta$curr_pd),
aes(label = results_cumulative),
vjust = -.5) +

facet_wrap(~fct_reorder2(mech_code, period, targets)) +
labs(title = glue("Upward trend in TX_NEW results thru {meta$curr_qtr} quarters”) %>% toupper,
subtitle = glue("{cntry} | {meta$curr_fy_lab} cumulative mechanism results"”),
x = NULL, y = NULL,
caption = glue("{meta$caption}"))
End(Not run)

identifypd Extract Current Reporting Period

Description

‘identifypd* uses the information from the raw MSD structure to identify the current reporting
period (fiscal year and/or quarter). This function can be used to make other inputs in your code
more dynamic. Originally, ‘identifypd‘ was developed for use in achafetz/PartnerProgress

Usage

identifypd(df, pd_type = "full”, pd_prior = FALSE)

Arguments
df dataset to use to find latest period
pd_type what is returned? (a) full, eg fy2018ql; (b)year, eg 2018; (c) quarter, eg 1

pd_prior do you want the last period returned (instead of the current); default = FALSE

12 identify_psd

Examples

Not run:

#return full, current period, eg "fy2018g3"
identifypd(df_mer)

#return the current quarter, eg 3
identifypd(df_mer, "quarter”)

#return the prior quarter, eg "fy2018qg2"
identifypd(df_mer, pd_prior = TRUE)

End(Not run)

identify_psd Identify PSD Data Stream and Level

Description

This function is useful as a utility function in this and other packages to determine the type of file
that is read in and determine certain types of munging handling.

Usage

identify_psd(df)

Arguments

df PSD dataframe

Value

character, PSD data stream and the level

Examples

Not run:

#read in file for use
path <- "~/Data/ICPI_MER_Structured_Dataset_PSNU_20180323_v2_1.txt"
df <- read_psd(path)

#identify data stream
identify_psd(df_psnu)

End(Not run)

pluck_totals 13

pluck_totals Filter for Only Totals in MSD

Description

Often times we want just want to work with totals when performing an analysis or visualization.
This function is a simple filter for Total Numerator and Denominator in a MSD dataframe

Usage
pluck_totals(df)

Arguments

df MER Structured Dataset (MSD) dataframe

Value

MSD with only total numerator and denominator

Examples

df_msd <- read_msd(path)

df_totals <- df_msd %>%
pluck_totals() %>%
clean_indicator() %>%
filter(indicator %in% cascade_ind)

read_msd Import PEPFAR Structured Datasets .txt into R and covert to .rds

Description

Deprecated. Use ‘read_psd* instead.

Usage

read_msd(
file,
save_rds = FALSE,
remove_txt = FALSE,
convert_to_old_names = FALSE

14 read_psd

Arguments
file enter the full path to the PEPFAR structured dataset file
save_rds save the Structured Dataset as an rds file, default = FALSE
remove_txt should the txt file be removed, default = FALSE

convert_to_old_names
replace FY22Q2 naming convention with old? default = FALSE

read_psd Import PEPFAR Structured Datasets to R

Description

‘read_psd‘ imports a stored PEPFAR Structured Datasets (.zip, .txt, or .parquet). The function will
read in a MSD, Genie, Financial, HRH, or DHI PEPFAR dataset, ensuring the column types are
correct. The user has the ability to store the txt file as a rds or parquet file, significantly saving stor-
age space on the computer (and can then remove the txt file after importing). Most of USAID/OHA
processes and analyses rely on the use of the MSD file being read in via ‘read_psd‘. This function
can be used in the PDAP space in addition to working locally.

Usage

read_psd(
file,
export_format = "none"”,
remove_base_file = FALSE,
retain_genie_cols = FALSE

Arguments

file enter the full path to the PEPFAR structured dataset file

export_format if desired, save the PSD in another compressed format, either "rds" or "parquet"”,
default = "none"

remove_base_file
should original base file be removed if exporting in another compressed format?
default = FALSE

retain_genie_cols
should Genie specific columns (‘dataclementuid‘, ‘categoryoptioncombouid®,

‘approvallevel®, ‘approvalleveldescription‘) be retained in the output dataset?
default = FALSE

remove_centralsupport 15

Examples

Not run:
#convert Q1 clean PSNU file from txt to Rds
#read in file for use
path <- "~/Data/MER_Structured_Datasets_OU_IM_FY22-24_20240315_v2_1.zip"
df_psnu <- read_psd(path)
End(Not run)

remove_centralsupport Remove Central Support Reporting

Description

Central Support is often desired to be removed from MER analysis. As of FY21Q4, "CS" is a field
under ‘indicatortype‘, which can be used to identify and exclude this sort of reporting. This function
is run by default in ‘resolve_knownissues®, but can be run separately if desired.

Usage

remove_centralsupport (df)

Arguments

df MSD dataframe (must include indicatortype)

Value

df with central support reporting removed

remove_mo Remove M&O funding

Description

When working with financial data, its often useful to remove M&O funding from the data.

Usage

remove_mo (df)

Arguments

df financial or comprehensive budget dataset

Value

a dataset excluding M&O

16 remove_sch

remove_sch Remove Supply Chain Funding

Description
When working with financial data, its often useful to remove Supply Chain mechanism and funding
from the data.

Usage

remove_sch(df, poc = c("SCH", "SGAC"), flag_only = FALSE)

Arguments
df this can be either a financial structured dataset or an MSD
poc you can choose to filter either the SCH list or the SGAC list; default is both
flag_only allows you keep full dataset, but identify the mechanisms that are supply chain,
mech_sch as a logical; default = FALSE
Details

The list of SCH mechanisms is maintained by the EA team on a Google Sheet. A USAID email is
required to access the dataset.

Value

a df without supply chain mechanisms

See Also

[set_email()] to store USAID email; [load_secrets()] to load credentials into session

Examples

Not run:

#authenticate

load_secrets()

#remove SCh using SGAC list

df <- remove_shc(df, poc = "SGAC")
End(Not run)

rename_official 17

rename_official Apply the latest mechanism and partner names from DATIM

Description

Some mechanisms and partners are recorded in FACTSInfo with multiple names over different time
period. This function replaces all partner and mechanism names the most recent name for each
mechanism ID pulling from a DATIM SQL View. The ‘mech_code* variable is required in your
dataset, and having ‘operatingunit‘ and ‘fiscal_year® or ‘period* are highly recommended as they
will limit the size of the DATIM queries.With an DHIS2 update to DATIM in 2021, the DATIM
mechanism tables requires a password to access. We would recommend using ‘glamr::set_datim()*
to store your DATIM credentials securely on your local machine. If you don’t have them stored,
you will be prompted each time to enter your password to acces DATIM.

Usage

rename_official (df, datim_user, datim_pwd)

Arguments
df identify the PEPFAR Structured Data Set to clean
datim_user DATIM username; if missing will look for stored credentials first and then
prompt for them if not found
datim_pwd DATIM password; if missing will look for stored credentials first and then
prompt for them if not found
Examples
Not run:
df_psnu_im <- read_psd(file) %>% filter(country == "Saturn")

df_psnu_im <- rename_official(df_psnu_im)
End(Not run)

reshape_msd Reshape MSD

Description

‘reshape_msd* transforms the structure into a tidy format. The default reshape, makes the whole
dataset long by period, but other options include wide to match the original MSD, semi-wide for
a separate column for targets, cumulative, and results, and then a quarterly one which keeps the
targets (and cumulative) in their own columsn but makes the quarters long. Reshaping tidy is key
for much of OHA/SI processes and analysis.

18 resolve_knownissues

Usage

reshape_msd(
df,
direction = c("long"”, "wide”, "semi-wide"”, "quarters"),
include_type = TRUE,
qtrs_keep_cumulative = FALSE

)
Arguments
df MSD dataset in the semi-wide format
direction direction of reshape, "long" (default), "wide" (original MSD structure), "semi-

wide" (one column for targets, cumulative, results) or "quarters” (quarters piv-
oted, but not targets - useful for quarterly achievement)).

include_type whether a period_type column (targets, results, cumulative) should be included,
default = TRUE

gtrs_keep_cumulative
whether to keep the cumulative column when using quarters for direction, de-
fault = FALSE

Examples

Not run:
#read in data
df_genie <- match_msd("~/Downloads/PEPFAR-Data-Genie-PSNUByIMs-2018-08-15.zip")
#reshape long
df_genie_long <- reshape_msd(df_genie)
#reshape wide (to look like old format)

df_genie_long <- reshape_msd(df_genie, direction = "wide")

#reshape semi-wide (one column for targets, cumulative, results)

df_genie_wide <- reshape_msd(df_genie, direction = "semi-wide")

#reshape quarters (quarters pivoted, but not targets - useful for quarterly achievement)
df_genie_wide <- reshape_msd(df_genie, direction = "semi-wide")

End(Not run)

resolve_knownissues Resolve Known Issues

Description

This function handles known issues in the MSD. For example, a mechanism starting mid-year and
reporting on TX_CURR will duplicate TX_CURR targets. This function resolves that by removing
those known cases and stores cases relevant to your data frame.

The best workflow is to filter your dataset down to a country and/or technical area of interest before
running ‘resolve_knownissues()‘. When you run the function, it will print out any known issues to

resolve_knownissues 19

the console (and can) even store them to your Global Environment, so it makes sense to limit the
data first to what you are using/care about.

The list of known issues is maintained by USAID/SIEI division. To access the table requires having
a USAID email account and can be accessed via ‘browse_knownissues()*.

Usage

resolve_knownissues(df, remove_cs = TRUE, store_excl = FALSE)

Arguments
df standard MSD data frame, typically after its been filtered
remove_cs remove data flagged as central support (CS), default = TRUE
store_excl should the known exclusions be store in the Global Envir?
Value

df excluding known targets/results issues

See Also

[browse_knownissues()] to view table in Google Sheets; [set_email()] to store USAID email; [load_secrets()]
to load credentials into session.

Examples

Not run:

library(tidyverse)
library(glamr)

load_secrets() # or googlesheets4::gs4_auth()

df_msd <- si_path() %>%
return_latest("OU_IM") %>%
read_rds()

df_mwi <- df_msd %>%
filter(operatingunit == "Malawi”,
indicator == "TX_CURR")

df_mwi_resolved <- df_mwi %>%
resolve_knownissues()
End(Not run)

20 source_info

snapshot_ind MER Snapshot indicators

Description

List of indicators in the MER that are snapshot indicators, eg TX_CURR, as opposed to a cumulative
one, like HTS_TST. Snapshot indicators are handled differently for calculating cumulative values
and target achievement.

Usage

data(snapshot_ind)

Format

A list of all snapshot indicators

snapshot_ind indicator names

source_info Extract MSD Source Information

Description

This function is used primarily to extract the data from the source file of a MER Structured Dataset,
MER NAT_SUBNAT Structured Dataset, Financial Structure Dataset, or DATIM Genie export. It
can also be used to extact information from the filename about the fiscal year, quarter, or period.

Usage
source_info(path, type, return = "source")
Arguments
path path to the folder containing MSDs or specific MSD file
type not required unless providing a folder in ‘path; default = "OU_IM_FY21";
other examples include: "PSNU_IM", "NAT_SUBNAT", "PSNU", "Financial",
"HRHII
return from the info, what should be returned; default = "source" other options are:
"period", "fiscal_year", "fiscal_year_label","quarter"
Value

vector of information related to what is being asked in ‘return*

split_save 21

See Also

Other metadata: extract_metadata(), get_metadata()

Examples

Not run:
source_info() #works if you have stored path to the MSD folder via glamr::set_paths()
source_info("../Data"”, type = "PSNUxIM")
source_info("../Data”, type = "PSNUxIM", return = "period")
source_info("../Downloads/Genie_PSNU_IM_Jupiter_Daily_c9f5889f-86c9-44e7-ab63-fa86c587d251.zip")
source_info("../Data/MER_Structured_Datasets_NAT_SUBNAT_FY15-21_20210618_v2_1.rds")
End(Not run)

Not run:
library(tidyverse)
library(glamr)
library(glue)

df <- si_path() %>%
return_latest("OU_IM") %>%
read_msd()

df_viz <- df %>%

filter(operatingunit == "Saturn”,

indicator == "TX_NEW",

standardizeddisaggregate == "Total Numerator”) %>%
count(fiscal_year, wt = targets, name = "targets")

df_viz %>%

ggplot(aes(fiscal_year, targets)) +

geom_col() +

labs(caption = glue("”Source: {source_info()}"))
End(Not run)

split_save Export a single dataset into multiple files by group

Description

‘split_save‘ breaks a dataset by the groups provided and then exports those individual frames as
separate csv files. This process can be useful when working with data across multiple partners and
then creating datasets to be sent to each of them with their own data.

Usage

split_save(df, group_var, folderpath, filename_stub, include_date = FALSE)

22 split_save

Arguments
df dataframe to split
group_var grouping variable to split the dataset by, eg operatingunit, funding_agency
folderpath directory where you want to store the files

filename_stub generic stub for naming all the files
include_date include date after filenamestub? default = FALSE, eg "20180913"

Examples

Not run:
#create country specific files for TX_NEW
df_mer %>%
filter(indicator == "TX_NEW",
standardizeddisaggregate == "Total Numerator”) %>%
split_save(operatingunit, "~/CountryFiles”, "FY18Q3_TX")

End(Not run)

Index

+ achievement
adorn_achievement, 3
calc_achievement, 6

* column munging
clean_agency, 7
clean_column, 8
clean_indicator, 8
clean_psnu, 9

+ datasets
achv_color_map, 2
cascade_ind, 7
snapshot_ind, 20

+ metadata
get_metadata, 10
source_info, 20

achv_color_map, 2
adorn_achievement, 3, 6
apply_funding_type, 4
apply_partner_type, 4

browse_knownissues, 5

calc_achievement, 3, 6
cascade_ind, 7
clean_agency, 7, 8, 9
clean_column, 7, 8, 9
clean_indicator, 7, 8, 8, 9
clean_psnu, 7-9,9

extract_metadata, 10, 21
get_metadata, 10, 2/

identify_psd, 12
identifypd, 11

pluck_totals, 13

read_msd, 13
read_psd, 14

23

remove_centralsupport, 15
remove_mo, 15
remove_sch, 16
rename_official, 17
reshape_msd, 17
resolve_knownissues, 18

snapshot_ind, 20
source_info, 10, 20
split_save, 21

	achv_color_map
	adorn_achievement
	apply_funding_type
	apply_partner_type
	browse_knownissues
	calc_achievement
	cascade_ind
	clean_agency
	clean_column
	clean_indicator
	clean_psnu
	get_metadata
	identifypd
	identify_psd
	pluck_totals
	read_msd
	read_psd
	remove_centralsupport
	remove_mo
	remove_sch
	rename_official
	reshape_msd
	resolve_knownissues
	snapshot_ind
	source_info
	split_save
	Index

